首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16463篇
  免费   3470篇
  国内免费   636篇
电工技术   97篇
综合类   633篇
化学工业   8170篇
金属工艺   2066篇
机械仪表   513篇
建筑科学   209篇
矿业工程   101篇
能源动力   148篇
轻工业   263篇
水利工程   7篇
石油天然气   26篇
武器工业   120篇
无线电   374篇
一般工业技术   7359篇
冶金工业   367篇
原子能技术   31篇
自动化技术   85篇
  2024年   55篇
  2023年   359篇
  2022年   399篇
  2021年   758篇
  2020年   667篇
  2019年   711篇
  2018年   766篇
  2017年   811篇
  2016年   988篇
  2015年   1278篇
  2014年   1093篇
  2013年   1195篇
  2012年   1055篇
  2011年   1122篇
  2010年   957篇
  2009年   968篇
  2008年   740篇
  2007年   920篇
  2006年   879篇
  2005年   713篇
  2004年   683篇
  2003年   640篇
  2002年   516篇
  2001年   391篇
  2000年   338篇
  1999年   271篇
  1998年   243篇
  1997年   185篇
  1996年   154篇
  1995年   142篇
  1994年   119篇
  1993年   71篇
  1992年   75篇
  1991年   77篇
  1990年   96篇
  1989年   70篇
  1988年   14篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1964年   1篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Biological materials exhibit anisotropic characteristics because of the anisometric nature of their constituents and their preferred alignment within interfacial matrices. The regulation of structural orientations is the basis for material designs in nature and may offer inspiration for man‐made materials. Here, how structural orientation and anisotropy are designed into biological materials to achieve diverse functionalities is revisited. The orientation dependencies of differing mechanical properties are introduced based on a 2D composite model with wood and bone as examples; as such, anisotropic architectures and their roles in property optimization in biological systems are elucidated. Biological structural orientations are designed to achieve extrinsic toughening via complicated cracking paths, robust and releasable adhesion from anisotropic contact, programmable dynamic response by controlled expansion, enhanced contact damage resistance from varying orientations, and simultaneous optimization of multiple properties by adaptive structural reorientation. The underlying mechanics and material‐design principles that could be reproduced in man‐made systems are highlighted. Finally, the potential and challenges in developing a better understanding to implement such natural designs of structural orientation and anisotropy are discussed in light of current advances. The translation of these biological design principles can promote the creation of new synthetic materials with unprecedented properties and functionalities.  相似文献   
62.
Since its first introduction in 2016, cold sintering process (CSP) has gained worldwide interest from the scientific community as green and innovative fabrication route due to the dramatic reduction of processing time, energy, and costs. Cold sintering resembles the geological formation of rocks where a ceramic powder is densified with the aid of a liquid phase under an intense external pressure and limited heating conditions (below 350 °C). Up to date, tens of different materials, including composites, have been successfully processed through CSP and extraordinary results in terms of densification, microstructure and final properties have been achieved. In the present review, processing features and variables, possible densification mechanisms and issues also for the realization of ceramic-based composites are explored. Advantages with respect to existing techniques are analysed and current challenges are described to lay the ground for new processing opportunities to be faced in the near future.  相似文献   
63.
The advent of 2D nanostructured materials as advanced fillers for polymer matrix composites has opened the doors to a plethora of new industrial applications requiring both electric and thermal management. Unique properties, in fact, can arise from accurate selection and processing of 2D fillers and their matrix. Here, we report an innovative family of nanocomposite membranes based on polyurethane (PU) and graphene nanoplatelets (GNPs), designed to improve thermal comfort in functional textiles. GNP particles were thoroughly characterized (through Raman, atomic force microscopy, high-resolution TEM, scanning electron microscope), and showed high crystallinity (ID/IG = 0.127), low thickness (D50 < 6–8 layers), and high lateral dimensions (D50 ≈ 3 μm). When GNPs were loaded (up to 10% wt/wt) into the PU matrix, their homogeneous dispersion resulted in an increase of the in-plane thermal conductivity of composite membranes up to 471%. The thermal dissipation of membranes, alone or coupled with cotton fabric, was further evaluated by means of an ad hoc system designed to simulate a human forearm. The results obtained provide a new strategy for the preparation of membranes suitable for technical textiles, with improved thermal comfort.  相似文献   
64.
In the present work blends of polystyrene (PS) with sepiolites have been produced using a melt extrusion process. The dispersion degree of the sepiolites in the PS has been analyzed by dynamic shear rheology and X-ray micro-computed tomography. Sepiolites treated with quaternary ammonium salts (O-QASEP) are better dispersed in the PS matrix than natural sepiolites (N-SEP) or sepiolites organo-modified with silane groups (O-SGSEP). A percolated network is obtained when using 6.0 wt% of O-QASEP, 8.0 wt% of N-SEP and 10.0 wt% of O-SGSEP. It has been shown that multiple extrusion processes have a negative effect on the polymer architecture. They produce a reduction in the length of the polymeric chains, and they do not lead to a better dispersion of the particles in the polymer matrix. Foams have been produced using a gas dissolution foaming process, where a strong effect of the dispersion degree on the cellular structure of the different foams was found. The effects on the cellular structure obtained by using different types of sepiolites, different contents of sepiolites and different extrusion conditions have been analyzed. The foams produced with the formulations containing O-QASEP present the lowest cell size and the most homogeneous cellular structures.  相似文献   
65.
Flexible piezoelectric energy harvesters (PEHs) have attracted extensive interest because of their ability to transform mechanical energy into electric power. Here, PEHs were fabricated using P(VDF-TrFE)-based piezoelectric composite films containing lead zirconate titanate (PZT) powder and –OH-functionalized graphene (HOG) nanosheets (HOG-P/P). Among all composites, a high open-circuit voltage (Voc) of approximately 50 Vp-p and a maximum power density of 1.4 μW/cm2 were obtained from a HOG-P/P PEH with 0.10 wt% HOG nanosheets and 15 wt% PZT under bending–releasing mode. Moreover, the PEH exhibited a stable voltage output after 3000 bending–releasing cycles. In addition, the PEH harvested mechanical energy from human body movements and generated an output voltage and current of 60 V and 8 μA during the finger bending–releasing process, lighting up 30 commercial white LEDs. The enhanced piezoelectric performance can be attributed to the introduction of HOG nanosheets and PZT powder. This work provides an effective strategy for improving the output performance of P(VDF-TrFE)-based PEHs.  相似文献   
66.
Due to its suitable working voltage and high theoretical storage capacity, antimony is considered a promising negative electrode material for lithium-ion batteries (LIBs) and has attracted widespread attention. The volume effect during cycling, however, will cause the antimony anode to undergo a severe structural collapse and a rapid decrease in capacity. Here, a general in situ self-template-assisted strategy is proposed for the rational design and preparation of a series of M Sb (M = Ni, Co, or Fe) nanocomposites with M N C coordination, which are firmly anchored on Swiss-cheese-like nitrogen-doped porous carbon as anodes for LIBs. The large interface pore network structure, the introduction of heteroatoms, and the formation of strong metal N C bonds effectively enhance their electronic conductivity and structural integrity, and provide abundant interfacial lithium storage. The experimental results have proved the high rate performance and excellent cycling stability of antimony-based composite materials. Electrochemical kinetics studies have demonstrated that the increase in capacity during cycling is mainly controlled by the diffusion mechanism rather than the pseudocapacitance contribution. This facile strategy can provide a new pathway for low-cost and high-yield synthesis of Sb-based composites with high performance, and is expected to be applied in other energy-related fields such as sodium-/potassium-ion batteries or electrocatalysis.  相似文献   
67.
Thermoplastic additives, known as migrating agents, can be added to nanoparticle loaded thermosetting resins to form self-assembled nanoparticle structures. Most notably, in fiber reinforced thermosetting composites, self-assembled nanoparticle rich fiber-matrix interphases can be formed. While the self-assembly mechanism remains unclear, depletion interaction correctly describes the types of self-assembled structures formed. Formulations containing modest concentrations of migrating agent form self-assembled fiber-matrix interphases without causing aggregation in the bulk. Slight overdoses of migrating agent can lead to the formation of nanoparticle aggregates in the bulk phase, which can ultimately reduce the mechanical properties of the composite. Even larger overdoses of migrating agent cause the formation of large and open nanoparticle aggregates, indicative of rapid aggregation. Depletion theory predicts that larger molecular weight migrating agents should induce greater attractive forces, thus reducing the concentrations required to form these self-assembled structures. In this study, the migrating agent molecular weight dependence on the self-assembly and aggregation phenomenon are investigated. As predicted by depletion theory, larger molecular weights led to the formation of self-assembled interphases and aggregates at lower concentrations.  相似文献   
68.
One of the key breakthroughs enabling flexible electronics with novel form factors is the deployment of flexible polymer films in place of brittle glass, which is one of the major structural materials for conventional electronic devices. Flexible electronics requires polymer films with the core properties of glass (i.e., dimensional stability and transparency) while retaining the pliability of the polymer, which, however, is fundamentally intractable due to the mutually exclusive nature of these characteristics. An overview of a transparent fiber-reinforced polymer, which is suggested as a potentially viable structural material for emerging flexible/wearable electronics, is provided. This includes material concept and fabrication and a brief review of recent research progress on its applications over the past decade.  相似文献   
69.
Owing to lack of proper recycling methods, plastic flexible film wastes are usually directly discarded or incinerated, which brings about severe environmental pollution. Therefore, converting plastic wastes into value‐added products has received more and more attention in recent years. In this work, paper‐like composites derived from plastic flexible film wastes were prepared via the thermally induced phase separation method by adding polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) as a compatibilizer and fumed silica as an additive. The resulting paper‐like composites were characterized by SEM and infrared spectroscopy. Other properties such as mechanical properties, thermal properties, whiteness, printability and adsorption performance were also tested in detail. It was found that remarkable enhancements in mechanical, thermal and printable properties of the paper‐like composites were obtained when nano‐SiO2 loading was 2.5–3 wt%. Uniformly distributed holes that can endow good printability by providing space for ink or other functional molecules were observed by using SEM. Furthermore, the CIE whiteness value of the resulting composites can reach 91.6%–96.7% on adding nano‐SiO2. Additionally, the paper‐like composites integrating nano‐SiO2 and PE‐g‐MAH exhibited good solid ink affinity and high water or oil adsorption capacity. Thus, according to this research, high‐performance printable paper‐like composites used as major components of multifunctional papers can be prepared based on plastic flexible film wastes. © 2019 Society of Chemical Industry  相似文献   
70.
Cement-based composites is a promising type of structural material, which has prospective applications in relieving the urban heat island effect in summer and melted snow with low energy consumption. However, the major drawbacks of cement-based composites are heterogeneity, porosity, and brittleness. Porosity and microcrack have considerable influence on the thermoelectric of cement-based composites applied in large-scale concrete structures in future. This paper studied in detail the effect of porosity and crack on thermoelectric properties of the cement-based composite. The proper pores and cracks in the cement matrix are advantageous to enhance the Seebeck effect, but meanwhile it also reduces the electrical conductivity. So combined with Seebeck effect, electrical conductivity and other factors, it can obtain a comparatively low electrical conductivity (0.063S cm−1) of expanded graphite/carbon fiber reinforced cement-based composites (EG-CFRC), but EG-CFRC manifests the maximum thermoelectric figure of merit (ZT) has reached 2.22 × 10−7 when the porosity is 3.90%. With different porosity, the Seebeck effect of prepared EG-CFRC was strengthened when the crack existed. The effect is most pronounced by a factor of 2 when the porosity is 28.90%. Therefore, based on stabilizing the conductivity, the crack is fittingly made to have a good effect on the Seebeck coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号